Two 91社区 Projects selected for funding by Genome Canada
Quebec-based projects awarded over half of the total national allotment, demonstrating the province鈥檚 strength in the transformative science of genomics
Today, Genome Quebec announced that four projects would be funded through a pan-Canadian competition sponsored by Genome Canada. The Genomics Applications Partnership Program will invest over $19 million dollars in genomics in Qu茅bec. This includes two 91社区 research initiatives which will receive over $2.9 million in funding for their innovative use of genomic tools. Overall, Quebec projects fared well in the competition, securing 55% percent of the total Canadian envelope.
鈥淚 would like to extend my warmest congratulations to the leaders of the winning projects of Genome Canada鈥檚 Genomics Applications Partnership Program,鈥 said Martha Crago, Vice President, Research and Innovation, 91社区. 鈥淭he work of our researchers is truly innovative and builds on the deep relationships we have with partners outside of the University. These collaborations are crucial tools that enable us to make meaningful contributions to society.鈥
鈥淐ollaboration between multiple partners, from the public, private and academic sectors, will make it possible to counter the decline of bees, identify antibiotic resistance genes in the environment and develop new cellular therapies to treat refractory cancers. Genomics is a real ally in the search for concrete, sustainable solutions, but also a vector for innovation in research and technological applications,鈥 said St茅phanie Lord-Fontaine, Vice-President, Scientific Affairs,
Project 1: Enhancing Cord Blood Natural Killer blood cells to fight cancer (budget: $5,845,337)
The team of Dr. Michel Tremblay and Dr. David Langlais from 91社区, and Pierre Laneuville from the Cellular Therapy Laboratory, 91社区 Health Centre 鈥 together with commercial partner Kanyr Pharma 鈥 is enhancing the cancer-fighting potential of so-called Cord Blood Natural Killer (CB-NK) cells. These cells, collected from the umbilical cord, have a strong potential for anti-tumor immunotherapy, which is boosted through the addition of a synthetic compound. Using omics-based selection processes, the team aims to identify the specific signatures that indicate the likelihood of treatment efficacy for a given set of CB-NK cells. The specific cancer the team will examine is acute myeloid leukemia, a form that is notoriously difficult to treat.
Project 2: Crowdsourcing metagenomic analysis through video games (budget: $4,440,406)
Computer Science Professor Jerome Waldisph眉l, in partnership Gearbox Studio, is leveraging the potential of video games to engage a broad public in genomic research. By tagging metagenomic data and embedding it within a Massive Multiplayer Online Game (MMOG), the team is able dramatically accelerate data collection thanks to the high number of users, i.e., in the millions. They will work on adapting this technology to process metagenomics data sets from the Earth Microbiome Project (EMP) and use it to relate specific types of microbes to diet, aging, and various types of diseases.
About the Genomic Applications Partnership Program (GAPP)
GAPP was created to promote partnerships between industry end users, public end users and university researchers. This program helps to harness the potential of economics to increase the competitiveness of key sectors of the Qu茅bec economy. The GAPP is a solutions-based program that demonstrates how mature the technology is and how eager users are to accelerate its adoption. The program follows a cyclical process, launched two times per year. The scale of available funding ranges from $300,000 to $6 million per project.
听